| Math: Honors Calculus | | | |------------------------------------|---|---| | UNIT/Weeks
(not
consecutive) | Timeline/Topics | Essential Questions | | 3 | Pre-Calculus Review Real Numbers, Functions, and Graphs Linear and Quadratic Functions The Basic Classes of Functions Trigonometric Functions Inverse Functions Exponential and Logarithmic Functions Technology: Calculators and Computers | How are the properties of functions and functional operations useful? How do trigonometric and circular functions model real-world problems and their solutions? How do rational functions model real-world problems and their solutions? How do exponential functions model real-world problems and their solutions? How do logarithmic functions model real-world problems and their solutions? | | 4 | Limits Limits, Rates of Change and Tangent Lines A Numerical and Graphical Approach to Limits Basic Limit Laws Limits and Continuity Evaluating Limits Algebraically Trigonometric Limits Limits at Infinity Intermediate Value Theorem | How does the derivative represent an instantaneous rate of change? How does the integral represent the summation of an infinite set? How do you determine that a function is continuous and/or differentiable? Is there a way to visualize what a derivative is? | | 3.4 | Differentiation Definition of the Derivative The Derivative as a Function Derivatives of Inverse Functions Derivatives of Exponential and Logarithmic Functions Implicit Differentiation Related Rates | How does the derivative represent an instantaneous rate of change? How does the integral represent the summation of an infinite set? How do you determine that a function is continuous and/or differentiable? Is there a way to visualize what a derivative is? | | 8 | Applications of the DerivativeLinear Approximation and Applications | | | | Extreme Values The Mean Value Theorem The Shape of a Graph L'Hopital's Rule Graph Sketching and Asymptotes Applied Optimization Newton's Method Antiderivativeness | What does the graph of a function tell about the equation? How can calculus be used to solve problems in business and economics? How are derivatives used in optimization problems? | |------|--|---| | 11.2 | Approximating and Computing Area The Definite Integral The Fundamental Theorem of Calculus Part I and Part II Net Change as the Integral of a Rate Substitution Method Further Transcendental Functions Exponential Growth and Decay | How does the graph of a function relate to its equation? What methods involving integrals can be used to find the volume of a solid? | | 6 | Applications of the Integral Area Between Two Curves Setting Up Integrals: Volume, Density, Average Value Volumes of Revolution Solving Differential Equations Slope Fields | How can the concept of limits be applied in mathematics? How is the concept of a limit connected to a derivative and to an integral? How do the graphs of the first and second derivatives relate to the function graph? How is the rate of change reflected in its table and graph? |